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No celestial body has required as much labor for
the study of its motion as the Moon!

M — the mean anomaly of the Moon

M' — the mean anomaly of the Sun
D=M-M

Y The ascending node

True longitude of the Moon = the mean longitude

(20905 km) + 377'sin M ECCENTRIC-1  (period 27.3
days)

+ 13' sin 2M ECCENTRIC-2 (period 13.7
days)
(3699 km) + 76' sin (2D - M) EVECTION (period 31.8
days)
(2956 km) + 39'sin 2D VARIATION (period 14.7



Historical Background (before Einstein)

* Newton — the first theoretical explanation of the main
lunar inequalities (1687)

* Clairaut — lunar theory with the precision of 1.5 arc-
minute (1752)

» Laplace — the lunar theory with the precision of 0.5 arc-
minute; secular acceleration; speed of gravity (1802)

« Hansen — the lunar theory and tables with the precision
of 1 arc-second (1857)

* Delaune — an elliptic unperturbed orbit; 230 terms 1n the
perturbing function; perturbation of the canonical set of
clements; precision 1 arc-second (1860)

« Hill — rotating coordinates; Hill’s equation; Hill’s
intermediate orbit; precision 0.1 arc-second (1878)

* Brown — extension of Hill’s theory; Brown’s tables;
precision 0.01 arc-second (1919)



Historical Background (after Einstein)

De Sitter — relativistic equations of the Moon; geodetic precession (1919)

Einstein-Infeld-Hoffmann — relativistic equations of N-body problem;
massive bodies as singularities of space-time (1938)

Fock-Petrova — relativistic equations of N-body problem; massive bodies as
extended fluid balls (1940)

Brumberg — relativistic Hill-Brown theory of the Moon based on the EIH
equations; eccentricity in relativisticterme=0  (1958)

Baierlein — extension of Brumberg’s theory for e # 0 (1967)

Apollo 11 - LLR technique gets operational; ranging precision = a few meters
(1969)

Nordtvedt — testing the strong principle of equivalence with LLR (1972)
Standish — JPL numerical ephemeris of the Moon and planets (DE/LE)

Brumberg-Kopeikin — relativistic theory of reference frames in N-body
problem; matching technique (1989)

Damour-Soffel-Xu - relativistic theory of reference frames in N-body
problem; relativistic multipole moments (1991)

TIAU 2000 — relativistic resolutions on time scales and reference frames based
on the BK-DSX papers

APOLLO —new LLR technology at the Apache Point Observatory (2005);
ranging precision 1 millimeter
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Newtonian Equations of the Lunar Motion

Xy

L-VU,(Z)+ O, +VU(,)
| N

Earth's gravity ~ Figure's effects  Sun and planets

O, +VU(,)
—_— ———

Moon's gravity ~ Figure's effects  Sun and planets

d’x i M, - — N

m VU(X,)+—=VU(x,)=VU(X. )+ (tidal terms
= VU(E) + EVU () = VU (5,,) +( )
d’r - B B L
= V[UG)-U, G V[UGE)-UG)]

Vo . Ve
Earth-Moon gravity force Tidal gravity force fromthe Sun and planets.
Gradient of the perturbing potential.



Gravitational Field is not a Scalar!

Before After



From Minkowski to Riemann geometry
Time

ds? =0 Futurc

ds? -~ 0

absolute separatced

Spacc

Past

ds’ = =c’dt’ +dx’ +dy’ +dz’° »ds® = g c’dt’ +2gcdtdxX + g dx'dx’



General Theory of Relativity at a glimpse

* The metric tensor (¥j ten gravitational potentials
* The affine connection ¥ the force of gravity

* The Riemann tensor = the relative (tidal) force of gravity

e The Principle of Equivalence
* The Gravity Field Equations

W

the covariant derivative V

Matter tells space-time
how to curve: field egs.

Space-time tells matter
how to move:
egs. of motion



PPN metric tensor for a spherical body

Experiment Parameter
Gravitational redshift GP-A |0H —maser — 1] < 1.4-10~7

Perihelion shift Astrophys. observation |ga—“§’ﬂ — 1/ <10

Light deflection VLBI Iy —1] <10~
Gravitational time delay  Cassini ly—1]<2-107° ?
Lense—Thirring LAGEOS w-1 ~ 10%

Schiff GP-B - 1] ~ 5-10% (expected)




EIH equations of motion

Q)
I

i gi
—

the Newtonian gravity force

—; ;‘Z IEJMk §U+4Ev x(v xgy)+

J =1

-

non-linearity of the gravity feld "gravitomagnetic-like" force

R R FRICR S CRANCR

o

] =]
. . . . . V .
special-relativistic corrections to the gravity force

1 -\ 1
+ 5;2 [7a +(]. y)’”z;,-] — Ev +(a v+3;7a

. J/ \=

v ~\V”
an inductive acceleration-dependent gravity force the post-Newtonian modification of E= mc>

11



PPN equations of motion of extended bodies

_ G
- [1 + 5 (= to) (1 —7 H ) g N a “gravitomagnetic-field” parameter
Volation of SEP__he Newtonian graity foree introduced by Soffel et al. (PRD 2008)

-

time-dependent G

—(2[5 1)2 Zuk ZJM" g, +(2y+2- )va(v ng)+

J=i J=i

non-linearity of the gravity field "gravitomagnetic-like" force

e 2[(2y+1)v +Qr+2)2 =300 7 ) g, -(4r +2)(g, 5, )5, -5 )+ (8, 7 z-)Vf]

]¢z

o
Lorentz-invariance of the gravity force (pref errd f nme effects)

+lz [(4y+3)a +( . U)Fl.j]— —v’a, +(a v)v +(2y+1)E—a

2 =i 7"1-]- J=i
o d——— ~- J

~
an inductive acceleration-dependent gravity force the post-Newtonian modification of E= mé

Solution of these equations must be substituted to the solution of equation of a laser
pulse propagation (time-delay equation). The PPN time-delay equation has many terms
being identical to those in the PPN equations of motion of extended bodies.



‘Conventional’ PPN ranging model

Any coordinate reference system can be used in relativity to
interpret the data.

True, but making use of inappropriate coordinates
casily leads to misinterpretation of gravitational physics.

Modern computer technology 1s highly advanced. Data
processing can be done in any coordinates irrespectively of the
complexity of the equations of motion.

True, but making use of inappropriate coordinates

mixes up the spurious, gauge-dependent effects with real
physical effects and makes them entangled. There 1s no
unambiguous way to clearly separate gravitational physics
from coordinate effects.

Any post-Newtonian term in the PPN equations of motion has
physical meaning and, in principle, can be measured.

Not true. The PPN equations of motion of the Moon have
an enormous number of spurious, gauge-dependent terms
that have no physical meaning.
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The Gauge Freedom

The gauge condition is imposed on the metric tensor. It simplifies
the gravity field equations making their solution mathematically simpler.

However, the residual gauge freedom remains. It is defined by the gauge

functions £ , which obey certain equations and introduce a number of

spurious (unphysical) terms to the metric tensor (= gravity field potentials)

o (04

wiooo= xD+ E%(x)

'new' coordinates 'old' coordinates the gauge functions

ow' onw’
gp(xX)=g,W) S P s (W +E, 5+, , +0(5)

The spurious terms enter relativistic equations of motion of both the bodies
and photons. They must be carefully disentangled from the real physical
effects exisiting in the motion of the @lestial bodies. The Moon-Earth-Sun

system admits a large number of the gauge degrees of freedom, which can be

eliminated after transformation to the local inertail frame of the EM barycenter.
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Lorentz and Einstein contractions as the gauge modes

The Lorentz
contraction

The Einstein
contraction




Shape of a moving body in the global frame

Shape of a moving body can be defined in the global frame but it faces major difficulties
because of the Lorentz contraction and other (non-linear) frame-dependent coordinate
effects. One needs a local frame to work out a such definition.

vAg |
1 <) 3
PTA ::
To maintain the shape of.tﬁé celestial body

in the global framqg_,ori'é has to introduce
a spurious strgss“and strain inside the body to

.e®
.o

does not work in this way)



Ranging model of a gauge-invariant theory of gravity

Earth ck (T, -7))

) Moon

Solar system

barycenter

X, (t,) — x.(t,) = |Newtonian orbit|+|Gauge-dependent terms|+ |Physical PN perturbations

7(t,) =|Newtonian ERP|+|Gauge-dependent terms|+|Physical PN perturbations

,5(12) =|Newtonian LRP|+ |Gauge-dependent terms|+ |Physical PN perturbations

\ (1) =%, (1) + p(t,) - F(t,)| + |PN time delay (Sun)|+|PN time delay (Earth)

-/

v '
Gauge mdependent contains the gauge-dependent terms contains the gauge-dependent terms
observable time delay

y
all together these terms are gauge-independent
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More details in: Brumberg & Kopeikin, Nuovo Cimento B, 103, 63 (1989)



What is happening in the ‘conventional’ PPN ranging model?

Earth 0 ck (r,-7,)
F(t)

gty Moon

Solar system

barycenter

X, (t,) — x.(t,) = | Newtonian orbit|+17.|Gauge-dependent terms|+|Physical PN perturbations

7(t,) =|Newtonian ERP|+ |Gauge-dependent terms|+ |Physical PN perturbations

p(t,) =|Newtonian LRP|+|Gauge-dependent terms|+ |Physical PN perturbations

f(Tz _7;1) =

.

X, (t,)—-x.(t)+ p(t,)-r (tl)‘ + PN time delay (Sun)|+ PN time delay (Earth)

_/

-~
. e

Gauge-independent contains the gauge-dependent terms contains the gauge-dependent terms

observable time delay y

y
all together these terms are NOT gauge-independent but proportional to (15 -1)

18



XL(12)_XE(tl) =

Correcting the PPN ranging model

ck (t, -T,)

Solar system

barycenter

By Moon

7(2‘1) =

Newtonian ERP

ﬁ(tz) =

f’(Tz -T)) =

Newtonian orbit| +77,.|Gauge-dependent terms|+

Physical PN perturbations

+1];

Gauge-dependent terms

+

Physical PN perturbations

Newtonian LRP

+7];

o

Gauge-independent
observable time delay

Gauge-dependent terms

%, (1) = % (0) + P(1y) = 7(8)| + 11,

contains the gauge-dependent terms

~
all together these terms are gauge-independent that is does NOT depend on the parameter 7

+ |Physical PN perturbations
PN time delay (Sun)|+ [PN time delay (Earth)
\Contains the gaugeYdependent terms ’ )
19

Some details in: Kopeikin & Vlasov, Physics Reports, 2004




Magnitude of the synodic relativistic terms in the radial coordinate of the Moon

: M
Schwarschild G = -1 cm
c
. Wy Ry v
Lense-Thirring ———Ry 0.3 mm
c ¢
GM, (R, \’
PN Quadrupole 2 ( - ) Jre 2x10™ mm
c r
RY, from a few meters
Gauge-dependent terms  |——27 +...
c c down to a few mm
2
PN Gravitomagnetic n—O) YV, a few mm
ng,| cc
2 2
: . Ny \ (Ve
PN Gravitoelectric —) (—) v a few cm
ng c
“GM
n
Non-linearity of gravity ( = ) < 0.1 mm
ng c




Gauge-invariant theory of reference frames — IAU 2000
(Brumberg & Kopeikin 1988; Damour, Soffel & Xu 1989)

Field equations for the metric tensor

A

PN approximation

y

\ 4

Global frame (BCRF)

(t, x)
Resolution B1.3

Gauge and boundary conditions

I

Coordinate transformation

\ 4

y

A

A

(t, x)— (U, w)
Resolutions B1.3 and B1.5

A 4

Matching metric tensor in two

A 4

Laws of conservation

\ 4

Local frame (GCRF)
(U, w)
Resolution B1.3

* frames. Residual gauge freedom|*

A 4

Translational and rotational

>l

A

y

A 4
4

equations of motion

Multipole moments
Resolution B1.4




The gravitomagnetic influence on Earth-orbiting spacecrafts and

on the lunar orbit

Sergei M. Kopeikin*
Department of Physics € Astronomy,
University of Missouri-Columbia, 65211, USA

Gravitomagnetic field is covariantly split in the nirinsic and exirinsic parts, which
are generated by rotational and translational currents of matter respectively. The
intrinsic component has been recently discovered in the LAGEOS spacecraft experi-
ment. We discuss the method of detection of the extrinsic tidal component with the
lunar laser ranging (LLR) technique. Analysis of the gauge residual freedom in the
relativistic theory of three-body problem demonstrates that LLR is currently not
capable to detect the extrinsic gravitomagnetic effects which are at the ranging level
of few millimeters. Its detection requires further advances in the LLR technique that

are coming in the next 5-10 years.

PACS numbers: 04.20.-q, 04.80.Cc, 96.25.De

Submitted to the book in memory of J.A. Wheeler.
Editor: 1. Ciufolini (2009)
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Reference " _World-line of the geocenter
Fl‘ames i .= Geodesic world-line

Sun

Global RF (t,x)

\\l
I
P Jupiter

T =t(u,w) |lu =u(t,x)

E = E'(u,w)||w =w'(t,x) 23




Lunar theory in the local-inertial frame.

Earth-Moon system being considered locally, is a binary system on a
curved space-time background (Sun, planets).

Equations of motion of the Earth-Moon system are those of the
deviation of geodesics perturbed by the mutual gravitational interaction
between Earth and Moon.

There is a considerable similarity between this problem and that of the
evolution of the cosmological perturbations in expanding universe.

Earth-Moon equations of motion have enormous gauge freedom
leading to spurious gauge-dependent modes in motion of the celestial
bodies participating in three-body problem.
The main goal of the advanced lunar theory is

— to remove all gauge modes,

— to construct and to match reference frames in the Earth-Moon system with
a sub-millimeter tolerance,

— to ensure that ‘observed’ geophysical parameters and processes are real.

This 1s not trivial mathematical problem that requires a peer attention

of experts in relativity! .



Relativistic mass, center-of-mass and the Earth/
Moon figure

* Definition of mass, center of mass and other
multipoles must include the post-Newtonian
corrections

* Definition of the body’s local reference frame

 Definition of figure in terms of distribution of
intrinsic quantities: density, energy, stresses

» Relativistic definition of the equipotential surface

— geold/celenoid (Kopeikin S., 1991, Manuscripta

Geodetica, 16, 301)
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Rotation of the Earth/Moon in the Local Frame
(Kopeikin & Vlasov, Physics Reports, 2004)

* Define the intrinsic angular momentum § = I <L of the rotating
body in the locally-inertial frame of the body

» Derive equations of the rotational motion in the locally-inertial
frame of the body

dt

+ =z (post—Newtonian relativistic torque ) + ) (neglectibly small)
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